
Introduction to the IEEE
Software and Systems

Engineering Core
Standards

November 2009

 Prepared by:
Chuck Walrad
Meredith Newmaker
Rebecca Smith

Introduction to the IEEE Software and Systems Engineering Core
Standards

About the IEEE Computer Society

The Institute of Electrical and Electronics Engineers (IEEE) is the world's largest
technical professional society. With membership numbering more than 375,000
individuals in 150 countries, it publishes 30 percent of the world's technical papers
in the scope described by its name. The IEEE is organized into 39 technical
societies, some of which are active in developing standards, including the Computer
Society. The IEEE Computer Society is the largest association for computer
professionals in the world. Founded more than 50 years ago, it is now the largest of
the technical societies of IEEE.

About S2ESC

The Computer Society's Software and Systems Engineering Standards Committee
(S2ESC) develops and maintains a collection of nearly 50 standards for software
and systems engineers. S2ESC is chartered to ensure that its family of software
engineering standards are relevant, coherent, comprehensive and effective in use.
These standards are for use by practitioners, organizations, and educators to
improve the effectiveness and efficiency of their software engineering processes, to
improve communications between acquirers and suppliers, and to improve the
quality of delivered software and systems containing software.

S2ESC traces its roots back to 1976 when the Software Engineering Standards
Subcommittee of the Technical Committee on Software Engineering (TCSE) was
created. Its first standard, IEEE Std 730, Software Quality Assurance, was
published on a trial use basis three years later. By 1997, the collection had grown
to 44 documents. S2ESC also participates in international standards-making as a
member of the US Technical Advisory Group (TAG) to ISO/IEC JTC1/SC7 and as a
direct liaison to SC7 itself.

In addition to the development of standards, S2ESC sponsors or cooperates in
annual US or international conferences and workshops in its subject area.

Software Engineering as a Profession

Hallmarks of a profession are that it have a recognized Body of Knowledge and that
its practitioners master that body of knowledge .The Body of Knowledge often uses
a shared, specialized vocabulary. Often the Body of Knowledge is augmented by
standards of performance. Further, professions typically adopt of Codes of Ethics.
Certification of professionals often rest on these four elements.

Both the IEEE’s Software Engineering Body of Knowledge (SWEBOK) and S2ESC’s
body of standards are key elements of the Software Engineering profession. The
IEEE's Guide to the Software Engineering Body of Knowledge - 2004 Version o

2 | P a g e

http://www.computer.org/
http://www.computer.org/
http://www.ieee.org/

Introduction to the IEEE Software and Systems Engineering Core
Standards

(SWEBOK) defines the field and gives coverage of the knowledge practicing
software engineers should have. There is also an IEEE "Software Engineering Code
of Ethics".[12] In addition, there is a Software and Systems Engineering Vocabulary
(SEVOCAB),[13] published on-line by the IEEE Computer Society.

3 | P a g e

http://en.wikipedia.org/wiki/Software_engineering#cite_note-12
http://en.wikipedia.org/wiki/Software_engineering#cite_note-11
http://en.wikipedia.org/wiki/SWEBOK

Introduction to the IEEE Software and Systems Engineering Core
Standards

Contents
Contents .. 4

Purpose of This Standards Guide .. 6

The Value of System and Software Standards to Industry 6

Standards Essential To Informatics Technology Producers 7

Table of Essential Standards .. 7

Short Descriptions of the Standards Mentioned in This Booklet 10

IEEE Std 730-2002: Software Quality Assurance Plans 10

IEEE Std 828-2005: Software Configuration Management 10

IEEE Std 829-2008: Software and System Test Documentation 10

IEEE Std 830-1998: Software Requirements Specifications 11

IEEE Std 1008-1987: Software Unit Testing .. 11

IEEE Std 1012-2004: System and Software Verification and Validation 12

IEEE Std 1016-2009: Software Design Descriptions 12

IEEE Std 1028-2008: Software Reviews and Audits .. 12

IEEE Std 1044-1993(R2002): Classification for Software Anomalies 13

IEEE Std 1058-1998: Software Project Management Plans 13

IEEE Std 1062-1998(R2002): Software Acquisition .. 13

IEEE Std 1063-2001(R2007): Software User Documentation 13

IEEE Std 1074-2006: Developing a Software Project Life Cycle Process 13

IEEE Std 1233-1998(R2002): Developing System Requirements Specifications . . 14

IEEE Std 1362-1998(R2007): Information Technology – System Definition –
Concept of Operations (ConOps) Document .. 14

4 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

IEEE Std 12207-2008: Systems and Software Engineering—Software Life Cycle
Processes ... 15

IEEE Std 14143.1-2007: Information technology - software measurement -
functional size measurement. Part 1: definition of concepts 15

IEEE Std 14764-2006: Software Engineering--System Life Cycle Processes—
Maintenance ... 15

IEEE Std 15288-2008: Systems and Software Engineering—Software Life Cycle
Processes ... 16

The IEEE Software Engineering Body of Knowledge (SWEBOK) 16

5 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

Purpose of This Standards Guide

The purpose of this Standards Guide for software producers, as well as producers of
systems with embedded software, is to help informatics practitioners ensure that
developed and deployed systems and software:

• can be and are verified and validated

• meet the purpose for which they are intended

• are robust, reliable and resilient enough to consistently perform to their
intended use

IEEE System and Software Engineering Standards are as critical to industry as they
have been to space exploration. This Guide will introduce you to the core subset of
S2ESC’s portfolio of standards.

The Value of System and Software Standards to Industry
The aggressive transition to technology-based Information will be successful only if
software and software-intensive systems -- which encompass myriad products and
processes in complex ways -- seamlessly collect, aggregate, share, analyze and
present dynamic information in a timely manner.

For example, the anticipated human and economic benefits from the present rapid
transition to health information technologies demands that software and systems
developers of medical devices, digital medical records, and administrative, financial
and regulatory systems (e.g. public health, service/healthcare providers and
payers) design, develop and deliver interoperable products, processes and services
that are safe, secure, reliable and robust.

The application of IEEE S2ESC systems and software standards helps software
producers by simplifying product development processes, avoiding the pitfalls that
have overcome many software projects, and thus reduces non-value-adding efforts
and costs. Adoption and implementation of the core software and systems
engineering standards across companies that produce or tailor Information systems
and devices increases their development organization’s ability to deliver robust
software in shorter timeframes. Even more important, the consistent use of these
IEEE standards lowers the risks of delivering faulty products.

6 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

 Standards for Software and Systems Engineering encompass the full software and
systems lifecycles, from concept and development to delivery and maintenance,
and even the reuse of software components.

Standards Essential To Informatics Technology Producers
Ensuring that delivered software meets its purpose and consistently performs to its
intended use is vital to effective information delivery. As fundamental building
blocks for international systems and software development, IEEE Software and
Systems Engineering Standards help producers assure interconnectivity,
interoperability and verification of new Informatics products and systems enabling
the rapid implementation and trusted use of medical technologies.

The essential set1 of IEEE System and Software Standards that are key to the
development and delivery of robust software are given in the table below.

Table of Essential Standards

Numb
er

Official
Designation Name

730 IEEE Std 730-2002 IEEE Standard for Software Quality Assurance Plans

828
IEEE Std 828-1998
(R2005)

IEEE Standard for Software Configuration
Management

830
IEEE Std 830-1998

IEEE Recommended Practice for Software
Requirements Specifications

1008
IEEE Std 1008-
1987(R2002)

IEEE Standard for Software Unit Testing

1012
IEEE Std 1012-2004

IEEE Standard for System and Software Verification
and Validation

1016
IEEE Std 1016-
1998(R2009)

IEEE Recommended Practice for Software Design
Descriptions

1028 IEEE Std 1028-2008 IEEE Standard for Software Reviews and Audits

1058
IEEE Std 1058-1998

IEEE Standard for Software Project Management
Plans

1063 IEEE Std 1063-2001 IEEE Standard for Software User Documentation

1 This set is available from IEEE on the Essentials CD.

7 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

Numb
er

Official
Designation Name

(R2007)

1074 IEEE Std 1074-2006
IEEE Standard for Developing a Software Project Life
Cycle Process

12207
ISO/IEC/IEEE 12207:
2008

Systems and Software Engineering -- life cycle
processes

14764 IEEE Std 14764-2006
Software Engineering--System Life Cycle Processes--
Maintenance

8 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

In addition, HITSP may wish to examine these additional
S2ESC standards:

Numb
er

Official
Designation Name

829
IEEE Std 829-
2008 (March 27)

IEEE Standard for Software and System Test
Documentation

1044
IEEE Std 1044-
2002

IEEE Standard Classification for Software Anomalies

1062
IEEE Std 1062-
2002

IEEE Recommended Practice for Software Acquisition

1233
IEEE Std 1233-
1998 (R2002)

IEEE Guide for Developing System Requirements
Specifications

1362
IEEE Std 1362-
1998 (R2007)

IEEE Guide for Information Technology-System
Definition-Concept of Operations (ConOps) Document

14143
-1

ISO/IEC/IEEE141
43-1

Implementation Note for IEEE Adoption of ISO/IEC
14143-1:2007 Information Technology - Software
Measurement - Function Size Measurement Part I:
Definition of Concepts

15288
ISO/IEC/IEEE
15288(2008)

Systems and Software Engineering --System Life cycle
Processes

9 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

Short Descriptions of the Standards Mentioned in
This Booklet

IEEE Std 730-2002: Software Quality Assurance Plans
Abstract: The standard specifies the format and content of software quality
assurance plans. It
meets the IEEE/EIA 12207.1 requirements for such plans.

The SQA plan defines the means that will be used to ensure that software
developed for a specific product satisfies the user’s requirements and is of the
highest quality possible within project constraints. In order to do so, it must first
ensure that the quality target is clearly defined and understood. It must consider
management, development, and maintenance plans for the software.2

IEEE Std 828-2005: Software Configuration Management
Abstract: The minimum required contents of a Software Configuration
Management (SCM) Plan
are established via this standard. The application of this standard is not restricted
to any form, class, or type of software. This standard applies to the entire life cycle
of critical software (e.g., where failure would impact safety or cause large financial
or social losses), as well as to noncritical software and to software already
developed. A new version of this standard that defines the individual processes
that make up software configuration management is currently underway, and
expected to be published in 2010.

IEEE Std 829-2008: Software and System Test
Documentation

Abstract: Test processes determine whether the development products of a given
activity
conform to the requirements of that activity and whether the system and/or
software satisfies its
intended use and user needs. Testing process tasks are specified for different
integrity levels.
These process tasks determine the appropriate breadth and depth of test
documentation. The
documentation elements for each type of test documentation can then be selected.
The scope of
testing encompasses software-based systems, computer software, hardware, and
their

2 Guide to SWEBOK 2004. 2.1

10 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

interfaces. This standard applies to software-based systems being developed,
maintained, or
reused (legacy, commercial off-the-shelf, Non-Developmental Items). The term
“software” also
includes firmware, microcode, and documentation. Test processes can include
inspection,
analysis, demonstration, verification, and validation of software and software-based
system
products.

IEEE Std 830-1998: Software Requirements Specifications
Abstract: The content and qualities of a good software requirements specification
(SRS) are described
and several sample SRS outlines are presented. This recommended practice is
aimed at
specifying requirements of software to be developed but also can be applied to
assist in the selection
of in-house and commercial software products. It is very useful for development
teams to use as a checklist to remember all the different types of requirements
(functional, derived, operational, quality, etc.) that must be provided to the
development team.

IEEE Std 1008-1987: Software Unit Testing
Unit testing verifies the functioning in isolation of software pieces which are
separately testable. Depending on the context, these could be the individual
subprograms or a larger component made of tightly related units. A test unit is
defined more precisely in the IEEE Standard for Software Unit Testing (IEEE1008-
87), which also describes an integrated approach to systematic and documented
unit testing. Typically, unit testing occurs with access to the code being tested and
with the support of debugging tools, and might involve the programmers who wrote
the code.3 Test cases should be under the control of software configuration
management and include the expected results for each test.4

Key aspects of test planning include coordination of personnel, management of
available test facilities and equipment (which may include magnetic media, test
plans and procedures), and planning for possible undesirable outcomes. If more
than one baseline of the software is being maintained, then a major planning
consideration is the time and effort needed to ensure that the test environment is
set to the proper configuration.5

3 Guide to SWEBOK 2004. 2.1.1
4 Guide to SWEBOK 2004. 5.2.2
5 Guide to SWEBOK 2004. 5.2.1

11 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

IEEE Std 1012-2004: System and Software Verification and
Validation

Abstract: Software verification and validation (V&V) processes determine whether
the
development products of a given activity conform to the requirements of that
activity and whether
the software satisfies its intended use and user needs. Software V&V life cycle
process
requirements are specified for different software integrity levels. The scope of V&V
processes
encompasses software-based systems, computer software, hardware, and
interfaces. This
standard applies to software being developed, maintained, or reused [legacy,
commercial off-the shelf
(COTS), non-developmental items]. The term software also includes firmware,
microcode,
and documentation. Software V&V processes include analysis, evaluation, review,
inspection,
assessment, and testing of software products.

IEEE Std 1016-2009: Software Design Descriptions
Abstract: The necessary information content and recommendations for an
organization for Software
Design Descriptions (SDDs) are described. An SDD is a representation of a software
system that is used as a medium for communicating software design information.
This recommended practice is applicable to paper documents, automated
databases, design description languages, or other means of description.

IEEE Std 1028-2008: Software Reviews and Audits
Abstract: Five types of software reviews and audits, together with procedures
required for the
execution of each type, are defined in this standard. This standard is concerned
only with the
reviews and audits; procedures for determining the necessity of a review or audit
are not defined,
and the disposition of the results of the review or audit is not specified. Types
included are
management reviews, technical reviews, inspections, walk-throughs, and audits.

12 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

IEEE Std 1044-1993(R2002): Classification for Software
Anomalies

Abstract: A uniform approach to the classification of anomalies found in software
and its documentation
is provided. The processing of anomalies discovered during any software life cycle
phase are
described, and comprehensive lists of software anomaly classifications and related
data items that
are helpful to identify and track anomalies are provided. This standard is not
intended to define procedural or format requirements for using the classification
scheme. It does identify some classification measures and does not attempt to
define all the data supporting the analysis of an anomaly.

IEEE Std 1058-1998: Software Project Management Plans
Abstract: The format and contents of software project management plans,
applicable to any type or size of software project, are described. The elements that
should appear in all software project management plans are identified. This
standard has recently been merged into ISO/IEC 16326.

IEEE Std 1062-1998(R2002): Software Acquisition
Abstract: This standard provides a set of useful quality practices for use during one
or more steps in a software acquisition process is described. This recommended
practice can be applied to software that runs on any computer system regardless of
the size, complexity, or criticality of the software, but is more suited for use on
modified-off-the-shelf software and fully developed software.

IEEE Std 1063-2001(R2007): Software User
Documentation

Abstract: Minimum requirements for the structure, information content, and format
of user documentation, including both printed and electronic documents used in the
work environment by users of systems containing software, are provided in this
standard.

IEEE Std 1074-2006: Developing a Software Project Life
Cycle Process

Abstract: This standard provides a process for creating a software project life cycle
process

13 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

(SPLCP). It is primarily directed at the process architect for a given software
project.

IEEE Std 1074-2006 is unique in that it provides activities for assuring building in
security throughout the software life cycle.

IEEE Std 1074 is a standard for establishing the process to be used in a software
development , maintenance or other type of software project, including disposal/
withdrawal of the product. This standard requires selection of a users software
project life cycle model (SPLCM) based on the organization’s mission, vision, goals,
and resources. IT does not impose, define or imply a particular software life cycle
model or methodology. This standard describes the individual activities that are to
be used within the selected model and provides examples of mapping them onto
typical SPLCMs.

This standard may also be used to develop organizational processes to support
software development and maintenance or to develop special, single-function
processes within a project.

IEEE Std 1233-1998(R2002): Developing System
Requirements Specifications

Abstract: Guidance for the development of the set of requirements, System
Requirements Specification (SyRS), that will satisfy an expressed need, is provided.
Developing an SyRS includes the identification, organization, presentation, and
modification of the requirements. Also addressed are the conditions for
incorporating operational concepts, design constraints, and design configuration
requirements into the specification. This guide also covers the necessary
characteristics and qualities of individual requirements and the set of all
requirements.

IEEE Std 1362-1998(R2007): Information Technology –
System Definition – Concept of Operations (ConOps)
Document

Abstract: The format and contents of a concept of operations (ConOps) document
are described. A
ConOps is a user-oriented document that describes system characteristics for a
proposed system from the users’ viewpoint. The ConOps document is used to
communicate overall quantitative and qualitative
system characteristics to the user, buyer, developer, and other organizational
elements (for example,
training, facilities, staffing, and maintenance). It is used to describe the user
organization(s), mission(s), and organizational objectives from an integrated
systems point of view.

14 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

IEEE Std 12207-2008: Systems and Software Engineering
—Software Life Cycle Processes

Abstract: This International Standard establishes a common framework for
software life cycle processes,
with well-defined terminology, that can be referenced by the software industry. It
applies to the acquisition of systems and software products and services, to the
supply, development, operation, maintenance, and disposal of software products
and the software portion of a system, whether performed internally or externally to
an organization. Those aspects of system definition needed to provide the context
for software products and services are included. Software includes the software
portion of firmware. This revision integrates ISO/IEC 12207:1995 with its two
amendments and was coordinated with the parallel revision of ISO/IEC 15288:2002
(System life cycle processes) to align structure, terms, and corresponding
organizational and project processes. This standard may be used stand alone or
jointly with ISO/IEC 15288, and supplies a process reference model that supports
process capability assessment in accordance with ISO/IEC 15504-2 (Process
assessment). An annex provides support for IEEE users and describes relationships
of this International Standard to IEEE standards.

IEEE Std 14143.1-2007: Information technology - software
measurement - functional size measurement. Part 1:
definition of concepts

Abstract: IEEE Std 14143-1:2007 defines the concepts of FSM (Functional Size
Measurement). The concepts of Functional Size Measurement (FSM) are designed to
overcome the limitations of earlier methods of sizing software by shifting the focus
away from measuring how the software is implemented to measuring size in terms
of the functions required by the user.

IEEE Std 14764-2006: Software Engineering--System Life
Cycle Processes—Maintenance

Abstract: The process for managing and executing software maintenance activities
is described.

IEEE Std 14764:2006 describes in greater detail management of the Maintenance
Process described in IEEE Std 12207, including Amendments. It also establishes
definitions for the various types of maintenance. IEEE Std 14764:2006 provides
guidance that applies to planning, execution and control, review and evaluation,

15 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

and closure of the Maintenance Process. The scope of IEEE Std 14764:2006
includes maintenance for multiple software products with the same maintenance
resources. "Maintenance" in IEEE Std 14764:2006 means software maintenance
unless otherwise stated.

IEEE Std 14764:2006 provides the framework within which generic and specific
software maintenance plans may be executed, evaluated, and tailored to the
maintenance scope and magnitude of given software products. It provides the
framework, precise terminology and processes to allow the consistent application of
technology (tools, techniques and methods) to software maintenance.

IEEE Std 14764:2006 provides guidance for the maintenance of software. The basis
for the Maintenance Process and its activities comes from the definitions of IEEE Std
12207. It defines the activities and tasks of software maintenance, and provides
maintenance planning requirements. It does not address the operation of software
and the operational functions, e.g. backup, recovery and system administration,
which are normally performed by those who operate the software.

IEEE Std 14764:2006 is written primarily for maintainers of software and
additionally for those responsible for development and quality assurance. It may
also be used by acquirers and users of systems containing software who may
provide inputs to the maintenance plan.

IEEE Std 15288-2008: Systems and Software Engineering
—Software Life Cycle Processes

Abstract: This International Standard establishes a common process framework for
describing the life cycle of man-made systems. It defines a set of processes and
associated terminology for the full life cycle, including conception, development,
production, utilization, support and retirement. This standard also supports the
definition, control, assessment, and improvement of these processes. These
processes can be applied concurrently, iteratively, and recursively to a system and
its elements throughout the life cycle of a system.

The IEEE Software Engineering Body of Knowledge
(SWEBOK)

In this Guide, the IEEE Computer Society establishes for the first time a baseline for
the body of knowledge for the field of software engineering, and the work partially
fulfills the Society’s responsibility to promote the advancement of both theory and
practice in this field. In so doing, the Society has been guided by the experience of

16 | P a g e

Introduction to the IEEE Software and Systems Engineering Core
Standards

disciplines with longer histories but was not bound either by their problems or their
solutions.

It should be noted that the Guide does not purport to define the body of knowledge
but rather to serve as a compendium and guide to the body of knowledge that has
been developing and evolving over the past four decades. Furthermore, this body of
knowledge is not static. The Guide must, necessarily, develop and evolve as
software engineering matures. It nevertheless constitutes a valuable element of the
software engineering infrastructure.6

The purpose of the Guide to the Software Engineering Body of Knowledge is to
provide a consensually validated characterization of the bounds of the software
engineering discipline and to provide a topical access to the Body of Knowledge
supporting that discipline. The Body of Knowledge is subdivided into ten software
engineering Knowledge Areas (KA) plus an additional chapter providing an overview
of the KAs of strongly related disciplines. The descriptions of the KAs are designed
to discriminate among the various important concepts, permitting readers to find
their way quickly to subjects of interest. Upon finding a subject, readers are
referred to key papers or book chapters selected because they succinctly present
the knowledge.

The Guide is oriented toward a variety of audiences, all over the world. It aims to
serve public and private organizations in need of a consistent view of software
engineering for defining education and training requirements, classifying jobs,
developing performance evaluation policies, or specifying software development
tasks. It also addresses practicing, or managing, software engineers and the
officials responsible for making public policy regarding licensing and professional
guidelines. In addition, professional societies and educators defining the
certification rules, accreditation policies for university curricula, and guidelines for
professional practice will benefit from SWEBOK, as well as the students learning the
software engineering profession and educators and trainers engaged in defining
curricula and course content.7

6 Guide to SWEBOK 2004 Foreword
7 Guide to SWEBOK 2004 Preface

17 | P a g e

	Contents
	Purpose of This Standards Guide
	The Value of System and Software Standards to Industry
	Standards Essential To Informatics Technology Producers
	Table of Essential Standards

	Short Descriptions of the Standards Mentioned in This Booklet
	IEEE Std 730-2002: Software Quality Assurance Plans
	IEEE Std 828-2005: Software Configuration Management
	IEEE Std 829-2008: Software and System Test Documentation
	IEEE Std 830-1998: Software Requirements Specifications
	IEEE Std 1008-1987: Software Unit Testing
	IEEE Std 1012-2004: System and Software Verification and Validation
	IEEE Std 1016-2009: Software Design Descriptions
	IEEE Std 1028-2008: Software Reviews and Audits
	IEEE Std 1044-1993(R2002): Classification for Software Anomalies
	IEEE Std 1058-1998: Software Project Management Plans
	IEEE Std 1062-1998(R2002): Software Acquisition
	IEEE Std 1063-2001(R2007): Software User Documentation
	IEEE Std 1074-2006: Developing a Software Project Life Cycle Process
	IEEE Std 1233-1998(R2002): Developing System Requirements Specifications
	IEEE Std 1362-1998(R2007): Information Technology – System Definition – Concept of Operations (ConOps) Document
	IEEE Std 12207-2008: Systems and Software Engineering—Software Life Cycle Processes
	IEEE Std 14143.1-2007: Information technology - software measurement - functional size measurement. Part 1: definition of concepts
	IEEE Std 14764-2006: Software Engineering--System Life Cycle Processes—Maintenance
	IEEE Std 15288-2008: Systems and Software Engineering—Software Life Cycle Processes
	The IEEE Software Engineering Body of Knowledge (SWEBOK)

